■教育经历:
2015年9月--2019年9月,新加坡科技与设计大学(SUTD),博士
2011年9月--2014年6月,上海大学,光学,硕士
■工作经历:
2022年1月--至今,沙巴足球(中国)股份有限公司官网光电工程学院,副研究员
2020年1月--2021年12月,北京大学物理学院,博士后
2019年10月--2019年12月,北京大学物理学院,访问交流
2019年8月--2019年9月,浙江大学信息与电子工程学院,访问交流
2019年1月--2019年6月,中国科学院大学温州研究院,访问交流
2015年9月--2015年12月,新加坡科技研究局(A*STAR)高性能计算研究院,访问交流
2014年8月--2015年9月,新加坡科技与设计大学(SUTD),Research Assistant
■学术兼职:
(1) Coatings期刊客座编辑
(2) Physical Review A/B/Research, Light: Science & Applications, Nano-Micro Letters, Optics Letters, Optics Express, IEEE Journal of Selected Topics in Quantum Electronics, The Journal of Physical Chemistry等期刊审稿人
■教学信息:
本科生课程《Python程序设计》、《THz测试技术》
研究生课程《THz科学与技术》
■学术论文:
[29] Y. Xu∗, L. Wu, and L. K. Ang∗, “Surface exciton polariton enhanced Goos-Hänchen and Imbert-Fedorov shifts and their applications in refractive index sensing”, Optics Express 32, 11171-11181 (2024).
[28] W. Yang, J. Shao, Y. Zhang, W. Zhang∗, and Y. Xu∗, “Highly sensitive Goos-Hänchen shift surface plasmon resonance sensor with tin selenide allotropes”, Optics & Laser Technology 174, 110651 (2024).
[27] Y. She, T. Ling, M. Xu, W. Zhang∗, X. Chen, and Y. Xu∗, “Dual D-shaped photonic crystal fiber sensor for three-parameter sensing based on surface plasmon resonance”, IEEE Sensors Journal 24, 2705-2716 (2024).
[26] Y. She, T. Ling, Y. Zhang, H. Du, H. Lai, and Y. Xu∗, “Surface plasmon resonance sensor based on a D-shaped hollow microstructured fiber with bimetallic film”, Journal of the Optical Society of America B 41, 90-97 (2024).
[25] W. Yang, L. K. Ang, W.-T. Zhang∗, J.-G Han∗, Y. Xu∗, “High sensitivity gas sensor based on surface exciton polariton enhanced photonic spin Hall effect”, Optics Express 31, 27041-27053 (2023).
[24] J. Hou, X. Qian, Y. Xu, Z. Guo, B. Thierry, C.-T. Yang∗, X. Zhou∗, and C.-B. Mao∗, “Rapid and reliable ultrasensitive detection of pathogenic H9N2 viruses through virus-binding phage nanofibers decorated with gold nanoparticles”, Biosensors and Bioelectronics 237, 115423 (2023).
[23] Y. Xu∗, and W. Liu∗, “Fano resonance and slow-to-fast light conversion in a Laguerre-Gaussian rovibrational cavity”, Journal of Lightwave Technology 41, 2246 (2023).
[22] W. Huang, M. Liu, Y. Xu, S. Yin∗, W. Zhang∗, and J. Han∗, “Huygens principle for random metamaterial without coupling”, Journal of the Optical Society of America B 40, 312-317 (2023).
[21] J. Hou, Y. Xu, S. Sun, X. Zhong, C.-T.Yang∗, and X. Zhou∗, “Gold nanoparticles-decorated M13 phage SPR probe for dual detection of antigen biomarkers in serum”, Sensors and Actuators B: Chemical 374, 132811 (2023).
[20] H. Wang, Y. He∗, J. Zhang, and Y. Xu∗, “Highly sensitive refractive index sensor based on the lossy mode resonance enhanced photonic spin Hall effect”, Journal of the Optical Society of America B 39, 2992-2997 (2022).
[19] Y. Ge, F. Wang, Y. Yang, Y. Xu, Y. Ye, Y. Cai, Q. Zhang, S. Cai, D. Jiang, X. Liu, B. Liedberg, J. Mao*, Y. Wang*, “Atomically thin TaSe2 film as a high-performance substrate for surface-enhanced raman scattering”, Small 18, 2107027 (2022).
[18] J. Zhang, B. Jiang, Y. B. Song, and Y. Xu∗, “Surface Phonon Resonance enhanced Goos-Hänchen shift and its sensing application in the mid-infrared region”, Optics Express 29, 32973 (2021).
[17] Y. Xu∗, L. Wu, and L. K. Ang, “Ultrasensitive optical temperature transducers based on surface plasmon resonance enhanced composited Goos-Hänchen and Imbert-Fedorov shifts”, IEEE Journal of Selected Topics in Quantum Electronics 27, 4601508 (2021).
[16] Y. Xu, J. Y. Liu, W. J. Liu∗, and Y. F. Xiao, “Nonreciprocal phonon laser in a spinning microwave magnomechanical system”, Physical Review A 103, 053501 (2021). (Editors’ Suggestion)
[15] T. Q. Xie, Y. He∗, Y. F. Yang, H. F Zhang, and Y. Xu∗, “Highly sensitive surface plasmon resonance sensor based on graphene-coated U-shaped fiber”, Plasmonics 16, 205 (2021).
[14] D. Roy, Y. Xu, R. Rajendra, L. Wu, P. Bai∗, and N. Ballav∗, “Gold Nanoearbuds: Seed- Mediated Synthesis and the Emergence of Three Plasmonic Peaks”, The Journal of Physical Chemistry Letters 11, 3211 (2020).
[13] Y. Xu∗, L. Wu, and L. K. Ang∗, “Surface exciton polaritons: a promising mechanism for sensing applications”, Physical Review Applied 12, 024029 (2019).
[12] Y. Xu∗, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. K. Ang∗, W. Knoll∗, and L. Wu∗, “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth”, Advanced Optical Materials 7, 1801433 (2019). (高被引论文)
[11] Y. Xu, Y. S. Ang, L. Wu, and L. K. Ang∗, “High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study”, Nanomaterials 9, 165 (2019).
[10] C. T. Yang#, Y. Xu#, M. Pourhassan-Moghaddam, D. P. Tran, L. Wu, X. Zhou, and B. Thierry∗, “Surface Plasmon Enhanced Light Scattering Biosensing: Size Dependence on the Gold Nanoparticle Tag”, Sensors 19, 323 (2019).
[9] Y. Xu, C. Y. Hsieh, L. Wu, and L. K. Ang∗, “Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors”, Journal of Physics D: Applied Physics 52, 065101 (2019).
[8] Y. Xu, L. Wu, and L. K. Ang∗, “MoS2-based Highly Sensitive Near-infrared Surface Plasmon Resonance Refractive index Sensor”, IEEE Journal of Selected Topics in Quantum Electronics 25, 4600307 (2019).
[7] Y. Xu and L. K. Ang∗, “Guided modes in a double-well asymmetric potential of a graphene waveguide”, Electronics 5, 87 (2016).
[6] Y. Xu and L. K. Ang∗, “Guided modes in a triple-well graphene waveguide: analogy of five-layer optical waveguide”, Journal of Optics 17, 035005 (2015).
[5] Y. Xu, Y. He∗, Y. Yang, and H. Zhang, “Electronic band gaps and transport in Cantor graphene superlattices”, Superlattices and Microstructures 80, 63-71 (2015).
[4] Y. Xu, Y. He∗, and Y. Yang, “Transmission gaps in graphene superlattices with periodic potential patterns”, Physica B: Condensed Matter 457, 188-193 (2015).
[3] Y. Xu, Y. He∗, and Y. Yang, “Resonant peak splitting in graphene superlattices with one- dimensional periodic potentials”, Applied Physics A (Rapid Communication) 115, 721-729 (2014).
[2] Y. He∗, Y. Xu, Y. Yang, and W. Huang, “Guided modes in asymmetric graphene waveguides”, Applied Physics A 115, 895-902 (2014).
[1] Y. Xu, Y. He∗, Y. Yang, “Guide modes in three-dimensional topological insulator waveguide induced by magnetic fields”, Acta Photonica Sinica 42, 564-569 (2013).
■科研项目:
(1) 国家自然科学基金地区科学基金项目,项目编号:62365005,项目起止时间:2024.1-2027.12,主持,在研。
(2) 国家自然科学基金青年科学基金项目,项目编号:62205078,项目起止时间:2023.1-2025.12,主持,在研。
(3)中国博士后科学基金面上项目,项目编号:2021M690235,主持,已结题。
■常用链接: